

Lecture #1: Bits, Bytes, and Binary

CS106E Spring 2018, Young

The binary number system underlies all modern computers. In this lecture we'll take a look at
the binary number system and some of the implications of using binary numbers. Having a
solid grounding in binary will set us up to explore digital images and digital music in the next
two lectures.

Along the way, we'll see why we buy iPhones with 256 Gigabytes of memory instead of 250
billion bytes of memory. We'll discover that sometimes adding to a large positive number
leads to a large negative number such as 32767 + 15 = -32754. We'll find that binary
representation results in 0.1 + 0.2 = 0.30000000000000004.

We'll end with a quick look at how using the right encoding scheme can result in your foreign
language website looking great, and the wrong encoding scheme can result in in Russian
characters or in some cases just complete gibberish showing up in the middle of your French
website.

What is a Bit?
- Internally all information is stored using electronic switches. These switches can be

either on or off.

 When a switch is on, we sometimes think of this as representing the number 0,
or representing the condition “false”.

 When a switch is off, this corresponds to the number 1 or the condition “true”.

 This means we can think of all the switches in computer memory as
representing a whole bunch of 0s and 1s.

- We are used to working with the decimal number system which has 10 digits (0, 1, 2, 3,

…, 8, and 9). A number system having only 2 digits is called a binary number system.

- We also sometimes say that the decimal number system is base 10 and the binary

number system is base 2.

- We say that each electronic switch represents a single binary digit. The term binary

digit is shortened to bit.

What is a Byte?
- Trying to look over an undifferentiated mass of 0s and 1s is difficult, so we organize

them into groups of eight.
- A set of 8 bits is referred to as byte.

Bits and Bytes in other Mediums
- While bits and bytes are represented by the state of electronic switches in computer

memory, they can be represented differently in other storage media.

 2

 On magnetic disk, such as a hard drive, or on a magnetic tape we magnetically
polarize a section of the disk in one direction or in the opposite direction to
indicate values of 0 or 1.

 On an optical disk such as a CD, DVD, or Bluray, we place tiny pits on the disk,
the depth of the pit determines the value of the bits which are being stored.

- Ultimately regardless of the type of media the data is still represented as binary values.

Counting in Binary
- Let’s take a quick look at how to count in binary. This will lead us to a better

understanding of how binary works and how it compares to decimal.

- We sometimes indicate whether a number is representing a binary number or a decimal
number by using a subscript

 43610 is 436 in base 10 (i.e., in the decimal number system)

 10012 is 1001 in base 2 (i.e., in the binary number system)

- Counting in Decimal

0 + 1 = 1
1 + 1 = 2
2 + 1 = 3
3 + 1 = 4
…
8 + 1 = 9
9 + 1 = ???

When we get to 9 and add 1 to it in base 10, we don’t have another digit so instead
we reset the 1’s column to 0 and instead put a 1 in the next column, which
represents 10’s so

9 + 1 = 10

Something similar happens to make 99 + 1 = 100 and 999 + 1 = 1000

- Counting in Binary

0 + 1 = 1
1 + 1 = ???

Okay, we’ve now reached the point where we were when we tried adding 910 + 110
In binary there is no 2 digit, so instead we reset the 1’s column and put a 1 in the
next column which represents 2’s so in binary

1 + 1 = 10
10 + 1 = 11
11 + 1 = ???

Now we’re at the same position we were in decimal when we added 9910 + 110
With binary we’ll have to reset both the 1’s column and the 2’s column and carry
the result into the 3rd column which represents 4’s:

11 + 1 = 100

 3

- Here are the first sixteen binary digits and their decimal equivalents

010 02 810 10002
110 12 910 10012
210 102 1010 10102
310 112 1110 10112
410 1002 1210 11002
510 1012 1310 11012
610 1102 1410 11102
710 1112 1510 11112

Combinations of Binary Numbers
- Generally on the computer we’ll need to determine in advance how many bits or bytes

to set aside to represent a given quantity.
- The number of bits will determine the range of values that may be stored.

 For example, if I set aside just a single bit to represent a quantity, that may be
used to represent the decimal numbers 0 or 1 or states with only two
conditions such as true or false.

 If I set aside 4 bits, we can represent the decimal numbers 0 to 15 (as shown
above), we could instead use those 4 bits to represent positive and negative
decimal numbers from -8 to +7, or we could represent conditions which have
16 possible states.

 As an example, if we were storing information about Canadian
residents, we could use 4 bits to represent which Province in Canada
they lived in, since there are only 12 Provinces.

0000 = British Columbia 0011 = Quebec
0001 = Yukon 0100 = Ontario
0010 = Prince Edward Island …

 We could not represent states in the United States, since 4 bits cannot

represent 50 different combinations

- In general we can represent 2n states in n-bits

1 bit 2 states 21 = 2
2 bits 4 states 2 x 2 = 22 = 4
3 bits 8 states 2 x 2 x 2 = 23 - 8
4 bits 16 states 2 x 2 x 2 x 2 = 24 = 16
5 bits 32 states
6 bits 64 states
7 bits 128 states
8 bits 256 states

- If you’ve shopped for consumer electronics lately these numbers should look familiar to
you.

This is why we can purchase iPhones with memory amounts like 64, 128, and 256
not amounts like 50, 100, or 250.

 4

k’s. Megs, and Gigs.
- You may have noticed that in addition to consumer electronics coming in memory

amounts such as 64, 128, or 256 we also say that we are purchasing them in megabytes,
gigabytes, or terabytes. We don’t buy 64 million bytes of memory or 32 billion bytes of
memory.

 Thousands, millions, and billions are powers of 10, not powers of 2

 When working with the computer we need measuring amounts which reflect
our binary foundation not the decimal system we are used to.

- In computing we use kilobytes, megabytes, and gigabtyes

 A Kilobyte is 210 = 1024 bytes.
 This is the number of combinations we can store in 10 bits
 It is almost, but not quite the same as 1000 bytes

 A Megabyte is 220 = 1,048,576 bytes.
 This is the number of combinations we can store in 20 bits
 It is slightly larger than a million bytes

 A Gigabyte is 230 = 1,073,741,824 bytes.
 This is the number of combinations we can store in 30 bits
 It is slightly larger than a billion bytes

 A Terabyte is 240 and roughly corresponds to a trillion

- You may also run into the following measurements:

Tera = 250, Peta = 260, Exa = 270, Zetta = 280, Yotta = 290

For example CISCO estimates that global Internet traffic currently exceeds 1 Zettabyte
per year.

- While the majority of memory measurements inside the computer use these power-of-2
denominated amounts there are some exceptions

 Electrical Engineers refuse to participate in binary, so measurements by them
are generally based on the power of 10. For example data transfer rates over
digital communications are generally based on powers of 10 not powers of 2.

 Apple has decided powers of 2 are bad and has switched to powers of 10 in
some measurements they display to users.

- In an attempt to distinguish between powers of 10 and powers of 2, some computer

scientists use the terms kibi, mebi, and gibi (example: 64 mebibtyes). I haven’t found
these to be in particularly widespread usage, but you may run into them.

- In this system:

 kilo = 103 whereas kibi = 210
 mega = 106 whereas mebi = 220

 giga = 109 whereas gibi = 230

Problems with Binary Numbers in Computers
- Problems with binary integers

 As we saw previously we need to determine in advance how many bits to set
aside to represent a given quantity

 5

 If we don’t set aside enough bits, we can’t represent a given value.
 For example if I set aside 7 bits to represent a person’s age, that allows

me to represent ages from 0 to 127
 If longevity treatments allow humans to live beyond 127, my program

is now broken.

 When a number in a calculation exceeds the maximum number which can be
represented, we have overflow.

 For example, using 16-bits we can represent numbers from -32,768 to
+32,767.

 If I have a variable storing 32,767 and I add one to it, I don’t get
32,768, since I can’t represent that in my 16-bits.

 Instead I get -32,768.
 If you’re working with a computer and have a very large positive

number and it suddenly unexpectedly changes to a very large negative
number, there’s a very good chance you’ve just experienced overflow.

- Working with binary floating point numbers can also cause problems.

 0.1 + 0.2 = 0.30000000000000004
 We know 0.1 + 0.2 should equal 0.3.
 However, if we run this in many computer languages we’ll discover it

actually equals 0.30000000000000004

 0.7 + 0.1 = 0.7999999999999999
 This clearly should equal 0.8
 But instead we get 0.7999999999999999

 What’s going on here?
 Some numbers we cannot represent in a set number of decimal

places.

 2 / 3 doesn’t equal 0.67 or 0.66667 or even 0.6666667
instead we write that 2/3 = 0. 6̅ where the overline above the
6 indicates a repeating decimal.

 Irrational numbers such as Pi, also can’t be represented in a
finite number of decimal places.

 Repeating numbers and irrational numbers are not the same in binary
and decimal.

 The number 0.1 in base 10 is equal to 0.00011̅̅ ̅̅ ̅̅ ̅ or
0.000110011001100110011… in binary

 Inside the computer, floating-point numbers are represented in a set
number of bits, just as integer numbers are. While intuitively we
would expect 2/3rds when represented by a set number of decimal
places to round to 0.66667, we don’t expect something like 0.1 + 0.7
to cause problems, but it does because our instincts about decimal
numbers doesn’t carry to binary numbers.

 To prevent unexpected surprises such as the ones we’ve seen here,

programmers are cautioned not to store money using standard floating point
techniques.

Storing text and words using bits and bytes

 6

- We can encode text using bits by using different bit combinations to represent different
letters.

 For example, we could say that the bit combination 1000001 corresponds to
the letter ‘A’ and the bit combination 1000010 corresponds to the letter ‘B’.

 In fact this is exactly how these letters are represented in the computer.

- The standard encoding of text inside a computer is called ASCII.1

 ASCII stores upper-case letters, lower-case letters, punctuation characters,
along with some special control characters using different combinations of 7-
bits.

- A number of different schemes were developed to support International Text

 ASCII only used 128 combinations of the 256 available in a byte, so the ISO-
8859 standard used the remaining combinations to represent other types of
characters.

 ISO-8859-1 for example used the other 128 characters to represent
Western European characters such as à, é, ô, or ñ.

 ISO-8859-7 used the extra combinations for Greek letters like Δ, λ, or π

 The SHIFT-JIS character set used 16-bits to represent Japanese characters

 These different schemes were not compatible and loading a file encoded with
one scheme in a program meant for another scheme will result in gibberish.

- The Unicode character encoding was developed to provide a common character format

for all human languages.

 Modern Unicode represents characters using anywhere from 1-byte to 4-bytes,
depending on the character represented.

 The 1-byte characters correspond directly to the original ASCII standard. So
Unicode and ASCII can interoperate well.

 However, as 4-bytes gives us many, many possible bit combinations, Unicode
can be used to represent almost every language used by humans.

 Unicode includes bit combination for 87,882 characters used for
Chinese, Japanese, and Korean.

 It includes encodings for Egyptian Hieroglyphs, Sumerian Cuneiform,
and Mycenaean Linear B

 Unicode includes bit combinations to represent musical notes
 Unicode also includes bit combinations for Emojis.

 There are several different methods for encoding Unicode. The variant you are
most likely to run into is UTF-8. This encoding is widely used on the web.

1 ASCII stands for American Standard Code for Information Interchange, but you don’t need to know

that, and in fact many Computer Scientists probably don’t.

