
Imperative Programming

x = 1;

y = 2;

z = x + y;

x = x + 12;

y = x + 2;

Procedural Programming

function calculate(int x, int y) {

x = x + 12;

y = y + 8;

return x * y;

}

Before Objects

CHARACTER*8 NAME

INTEGER AGE

Before Objects

CHARACTER*8 CSNAME

INTEGER CSAGE

Before Objects

C This is Customer Data

CHARACTER*8 CSNAME

INTEGER CSAGE

Records or Structs

01 CUSTOMER-RECORD

05 NAME PIC A(10)

05 AGE 999

Records or Structs

struct customer {

char* name;

int age;

...

}

Records or Structs

struct customer {

char* name;

int age;

...

}

void updateAddress(struct customer cust)

void printInfo(struct customer cust) ...

Classes

class Customer {

private String name;

private int age;

...

public void updateAddress() …

public void printInfo() …

}

Logic Programming: Rules and Facts

• x is the grandparent of z if x is the parent of y, and y is the parent of z.

• x is an ancestor of y if x is the parent of y.

• x is the ancestor of z if y is the parent of z and x is an ancestor of y.

• Mary is the parent of Alice.

• John is the parent of Mary.

• Elizabeth is the parent of John.

Logic Programming: Questions

• Is Mary the grandparent of John?

• Is Elizabeth an ancestor of Alice?

Functions as First-Class Objects

sort(studentList);

sort(studentList, sortByLastName);

sort(studentList, sortByYearInSchool);

sortByYearInSchool = new Function(st1, st2) {

return st1.year > st2.year;

};

Functions as First-Class Objects

currStudent = new Student("Jasmine");

increment = new Function(x) {

x = x + 1;

};

No Side Effect vs. Side Effect

function increment(x) {

return x + 1;

}

x = 1;

function increment() {

x = x + 1;

}

