

Lecture #4-5: Computer Hardware (Overview and

CPUs)

CS106E Spring 2018, Young

In these lectures, we begin our three-lecture exploration of Computer Hardware. We start
by looking at the different types of computer components and how they interact during
basic computer operations.

Next, we focus specifically on the CPU (Central Processing Unit). We take a look at the
Machine Language of the CPU and discover it’s really quite primitive. We explore how
Compilers and Interpreters allow us to go from the High-Level Languages we are used to
programming to the Low-Level machine language actually used by the CPU.

Most modern CPUs are multicore. We take a look at when multicore provides big
advantages and when it doesn’t. We also take a short look at Graphics Processing Units
(GPUs) and what they might be used for.

We end by taking a look at Reduced Instruction Set Computing (RISC) and Complex
Instruction Set Computing (CISC). Stanford President John Hennessy won the Turing Award
(Computer Science’s equivalent of the Nobel Prize) for his work on RISC computing.

Hardware and Software:

 Hardware refers to the physical components of a computer.
 Software refers to the programs or instructions that run on the physical computer.

- We can entirely change the software on a computer, without changing the hardware
and it will transform how the computer works. I can take an Apple MacBook for
example, remove the Apple Software and install Microsoft Windows, and I now have a
Window’s computer.

- In the next two lectures we will focus entirely on Hardware.

Computer hardware components can generally be broken down into three categories:

Processing – Processing components are responsible for actually carrying out actions in the
computer. The main processing component is the Central Processing Unit (CPU). We will
take an extensive look at the CPU later in this lecture. In addition, modern consumer
laptops, desktop computers, and smartphones including a separate Graphics Processing
Unit (GPU), which we will take a brief look at.

Memory – As the term suggests, memory components remember information. We can
generally divide memory into two components: primary memory and secondary
memory.

 2

Primary memory is fast, but volatile – it loses all information stored in it when the power
goes off (a laptop maintains a trickle of energy to the primary memory in sleep mode, but
if the battery completely dies, the laptop’s primary memory contents will be lost. Primary
memory is primarily RAM (Random Access Memory). Secondary memory is much slower
and used for permanent, non-volatile storage. Secondary memory will usually be either
a Solid State Drive (SSD) or a Hard Drive (sometimes abbreviated HDD).

Smartphones have a similar divide between primary and secondary memory and include
volatile RAM and non-volatile Flash Memory.

We’ll study Memory in more depth next lecture.

Input/Output – A variety of devices are used to get information to and from the computer.
On a consumer laptop or desktop, these are primarily the keyboard, mouse, and
computer display (also sometimes referred to on desktop computers as the computer
monitor). In addition, devices like printers and scanners also fall into this category.

Input/Output is commonly abbreviated as I/O or simply io (pronounced as “eye-oh”).

While all computers have some sort of processing unit, the actual components do vary. The most
common computers in the world are neither desktop nor laptop computers; instead they are
embedded computers or embedded systems, which do not have a keyboard or mouse, and in some
cases don’t even have a display for output. These are the computers that are embedded in mundane
everyday devices from microwave ovens, coffee makers, and vending machines up to automobiles and
airplanes. Their inputs come from sensor devices, and their outputs are electronic signals, which
control the devices in which they are embedded.

Common Tasks on the Computer
- Let’s take a look at how some common tasks on the computer relate to the Computer

Components we’ve just listed.

Installing a Program on the Computer
- Typically, the installation files will be compressed, particularly if the application installer is

downloaded from the Internet, so they will need to be decompressed before the installation
progress can begin.

- The installation process copies the instructions for your new program onto your computer’s
secondary storage device (e.g., Solid State Drive or Hard Drive).

- At this point, the instructions are now decompressed and in permanent, non-volatile storage.

Running a Program on the Computer
- When we execute a program, the instructions for the program are copied from our

secondary storage device into primary memory.
- The instructions must be in primary memory for the CPU to access and execute them.
- In addition, storage space is set aside in primary memory for the program’s variables and

other information

Saving a File from a Program
- When we create data or documents in our program, the data is stored just in primary

memory unless we explicitly save the documents.
- As previously noted, primary memory is volatile and if the power goes out, your data will be

lost.
- Saving a file copies the data from primary memory to secondary memory where it is

permanently saved.

 3

Opening a File from a Program
- Opening a file from our program copies the data in the file from secondary storage into

primary memory where it can be operated on by the program.
- Generally, a program will want all data in primary memory before it can manipulate it.

Exploring the CPU

We will now take a closer look at the CPU. The most important things to take away from this
discussion are:

1) The primitive nature of the CPU in comparison to how we view computers (either as

programmers or as users).
2) Some understanding of what Machine Language and Assembly Language are.
3) The distinction between High-Level Languages and Low-Level Languages.
4) How Compilers and Interpreters allow us to execute High-Level Languages on a computer

that actually only understands Machine Language.

Components of the CPU include:

Registers – Storage in the CPU is limited to a small number of registers. For example, the ARM
architecture (used in the iPhone among other places) has 31 general-purpose 64-bit
registers (the 32nd is for special purposes only) and 32 registers that are 128-bits for
handling floating-point operations.

Instruction Register – A special register stores the binary code of the current instruction that
is being executed.

Instruction Counter – A special register keeps track of the current address in Main Memory of
the instruction that is currently being executed.

Arithmetic Logic Unit (ALU) – The ALU can take the contents of two different registers and
perform either an arithmetic operation on them (such as Add or Multiply) or a Boolean
logic operation on them (such as And or Or).

Control Unit – This contains the logic circuitry controlling the other parts of the CPU.

Machine Language
- Each type of computer processor has its own internal machine language. So an ARM

processor used in an Apple iPhone speaks an entirely different language than a MacBook
Pro, which has an Intel x86 processor in it.

- The actual language of all CPUs is quite primitive. Let’s take a look at some sample
instructions from the MIPS processor.1

Example Arithmetic and Boolean Instructions
- ADD $d, $s, $t

o Takes the contents of the $s register adds it to the $t register, using the Arithmetic
Logic Unit (ALU), and stores the results in the $d register.

1 The MIPS processor was one of the first commercial RISC processors. We’ll see the significance of this
later in this lecture. It was developed by John Hennessy, current Stanford Computer Science Professor

and Stanford’s President from 2000-2016.

 4

- OR $d, $s, $t
o Takes the contents of the $s register and perform a bitwise OR operation with the

contents of the $t register then stores the results in the $d register.

Example Jump and Branch Instructions
- JR $s

o Jump-based on Register: jump to the address specified in register $s. This changes
the next instruction which will be executed to the new memory address specified in
register $s.

- BGEZ $s, offset
o Branch-if Greater than or Equal to Zero: if the contents of register $s are greater

than or equal to zero, jump to a new location determined by offset—this changes
the contents of the Instruction Counter based on the offset amount, and thus
changes the next instruction to execute.

- BEQ $s, $t, offset
o Branch-if Equal: if the contents of register $s and register $t are the same, then

jump to the new location determined by offset.

Example Memory Instructions
- LBU $d, address

o Load Byte: loads the byte at a given memory address into the $d register.
- SB $s, address

o Store Byte: takes the least significant byte of the $s register and stores it at the
address given.

- LW $d, address
o Load Word: loads the 32-bits at a given memory address into the $d register.

- SW $s, address
o Store Word: takes the contents of the $s register and stores it at the address given.

There are more instructions then I have listed here, but this gives a good sense of what they look
like. There are arithmetic instructions to subtract, multiple, and divide, for example, as well as
arithmetic instructions for the floating point registers; more branch include testing if something
is less than zero or greater than zero; and the memory instructions allow transfers in 16-bit
chunks in addition to the 8-bit and 32-bit instructions I have listed.

General Operation of the CPU
- Instructions for the current program are stored in Main Memory.
- The Instruction Counter keeps track of the address in Main Memory for the current instruction
to execute.

Here is the basic cycle the CPU uses to carry out a program. This is sometimes referred to as the
Fetch-Decode-Execute cycle:

1) The instruction in Main Memory corresponding to the current value of the Instruction

Counter will be fetched from Main Memory and placed in the Instruction Register.
2) The Control Unit contains logic circuitry, which will decode the contents of the Instruction

Register to determine the instruction’s type and the registers it operates on; it will then send
the contents of those registers into the Arithmetic Logic Unit; finally it will send the resulting
value to the destination register.

3) The Instruction Counter will be incremented.
4) We go back to 1) where the instruction in Main Memory associated with the Instruction

Counter is retrieved from Main Memory.

 5

There are some exceptions. Branching will require changing the instruction counter. Loading
and storing operations will use different circuitry than the ALU. However, this gives you a basic
idea of how the CPU works.

Machine Language and Assembly Language

There are two languages that work at the CPU level. They are:

Machine Language – This is the actual language of the CPU. It consists of binary codes.

Assembly Language – This is a language used by programmers, which translates directly into
Machine Language, with each individual instruction in Assembly having a direct
equivalent in Machine Language.

Here’s an example:

As a programmer, I might write the instruction:

 ADD t1, t2, t3

This means take the contents of register t2 add it to the contents of register t3 and store it in
register t1. The equivalent machine language code is:

 00000001010010110100100000100000

We can break this down into the following parts

 000000 01010 01011 01001 00000 100000

Going from right-to-left the 100000 at the end is the code for ADD. The code for SUB
(subtract) would be 100010, the code for DIV would be 011010. The CPU uses these last six
bits to determine what operation is being performed.

The next set of bits (again going right-to-left) is 00000. These bits would be used for SHIFT
operations (operations shifting bits leftward or rightward within a register) and is not
needed for our ADD operation.

The next three sets of bits 01001, 01011, and 01010 designate the registers used by our ADD
operation. 01001 is the destination register. The 01011 is the first source register, and the
01010 is the second source register. Note that these register codes are five bits long 25 = 32
and MIPS has 32 registers for integer values.2

The final six bits set to 000000 are not needed for basic arithmetic operations.

- Each line of Assembly Code can be translated directly into the binary Machine Code that the MIPS

processor actually uses. However “ADD t1, t2, t3” is much easier for a human to write and much
harder to make a mistake with than writing “00000001010010110100100000100000”.

2 If you’re wondering how t1 translates into 01001 instead of just 00001, MIPS designates different sets
of registers for different purposes. The register t1 is designated for storing temporary results and

corresponds to register 9, not register 1.

 6

- A human programmer working at this level of programming would write the program in Assembly
Code. They would then use a program called an Assembler, which translates Assembly Code to its
Machine Code equivalent. The Machine Code generated is what would actually be loaded onto the
computer.

High-Level Languages and Low-Level Languages

- Computer Scientists distinguish between two types of computer languages:

Low-Level Languages – Which are Machine Language and Assembly Language.

High-Level Languages – Which is basically everything else, including whatever you learned to
program in. This includes Java, C++, Python, C, JavaScript, anything that isn’t either Machine
Language or Assembly Language.

- As you may have noticed Machine Languages and their equivalent Assembly Language are missing a lot
of things we take for granted. To point out just a few examples:

 Data Types are very limited. There are no Strings; there are no Characters; and there are no
Objects.

 Control Structures are very limited. There are no “for” loops and no “while” loops.
 We don’t even have Functions, much less Classes and Methods.

- Most programmers do not work at the Assembly or Machine Language level.

 these languages are very difficult to program with
 it is very easy to make mistakes when working at this level
 it takes a lot of code to get even simple things done

- Most programmers program at the High-Level Language level because it’s much more productive.

Compilers and Interpreters
- So this raises a question, if the internal computer language of a CPU is Machine Language, and we’re

doing all our programming in a High-Level Language like Java or C++, how does our program written
in a High-Level Language actually get executed by a processor that doesn’t understand that language?

- There are two basic methods for executing a High-Level Language.

Compilation – In this approach, we take the original file written in the High-Level Language, which we
refer to as the Source File or the Source Code. This file is input into a program called a Compiler.
The Compiler completely translates the Source Code into Machine Language Binary Code for our
target computer. This binary machine code is referred to as the Object Code. (Note that this use
of the word Object has nothing to do with the word Object used in “Object-Oriented Programing
(OOP)”, if you’re not familiar with OOP, we’ll be discussing it during our Programming Languages
lecture later in the quarter.)

In many cases, there will be multiple Source Files, each which has a corresponding Object Code
file. In addition, a program may require one or more library files, which are generally provided as

 7

Object Code files. A program called a Linker combines the Object Code into a single Executable
File. The Executable File is the file that the user needs on their computer to run the program.3

You can think of Compilation as similar to Translating a book. For example, I’m reading Harry
Potter and the Philosopher’s Stone in Japanese. JK Rowling wrote the book and gave it to Yuko
Matsuoka, the translator. Ms. Matsuoka proceeded to create an entirely new book in Japanese,
and that is the copy I am reading. This is what happens with Compilation. We start with a program
written in one language and end up with the program written in an entirely different language.
the consumer ends up with the machine language version and we keep the source code version to
ourselves. We’ll see this contrasts with the next approach for executing a High-Level Language.

Languages that are typically compiled include C++ and C.

Interpretation – In this approach, we have a program called an Interpreter that executes our High-
Level Language. The Interpreter reads our High-Level Language program line by line. When it gets
to a particular line, it considers what that line means and executes that line, and then it moves to
the next line and does the same thing.

Let’s look at some examples of how this might work:

 If a line in our High-Level Language file says to declare a variable, the Interpreter reads
that line, allocates a storage location for the variable, and makes an entry in a symbol
table associating the name of the variable with the storage location.

 If we have a line in our code to add 1 to a variable, the Interpreter uses the symbol table
to determine where that variable is stored, retrieves the value of the variable and adds
one to it.

No object code is produced. The equivalent Machine Language instructions are not generated. I
actually give my users a copy of the original High-Level Language code.

Interpreted languages include JavaScript and Python.

Strengths and Weaknesses of Compilers and Interpreters
- Let’s take a quick look at why one might use one of these techniques or the other.

Compilers:

 Compiled code runs much faster than interpreted code. If your objective is execution
speed, you’ll want to use a compiled language. Most high-end games, for example, are
written in C++, which is a compiled language. They want the code to run as fast as possible
so that the game runs smoothly.

Interpreters:

 Code written with an interpreted language can run on any platform that has an
interpreter for that language. For example, JavaScript is an interpreted language. Every
modern web browser acts as a JavaScript interpreter. I can have my web server send the
same JavaScript code to a PC, a Macintosh, an iPhone, and an Android Phone.

3 There are some cases where Object Code files for libraries are not included in the Executable File.
Typically, this is because these libraries will be used by a lot of programs, and including the library
code in each executable will lead to a lot of duplicate code. However, if the user does not have
the library installed, they may be required to somehow get a copy of the library object code.

 8

In contrast, if I were to write C++ code for the web, I would need to send different copies
to a PC vs. to an iPhone, since the PC’s CPU runs x86 machine code and the iPhone runs a
variant of ARM machine code.

 Interpreters do require sending the original High-Level Language code to the end-user.
This does make it easier for someone to see exactly how your program works. There are
different techniques for making your code more difficult to reverse engineer, but
ultimately interpreted code is much easier to reverse engineer than compiled code.

In the programming languages lecture and in the software engineering lecture, both of which will be
given later in the quarter, we’ll discover some other issues associated with Compiled and Interpreted
languages that might cause someone to choose one or the other. However, these are the most
important issues.

While most programming languages are designed for one approach or the other, it is possible to
develop a compiler for a normally interpreted language or an interpreter for a normally compiled
language.

 For example, BASIC traditionally has been interpreted. However, Microsoft’s version of BASIC
became quite popular with corporate IT departments, so Microsoft developed a compiler for
it. This allowed BASIC developers to choose to either continue to run their programs with an
Interpreter or take advantage of a BASIC compiler, which allowed their programs to run faster
and more efficiently.

A Hybrid Approach (Java Virtual Machine)

- The creators of Java wanted the benefits of portability that an interpreted language provided (i.e., the

ability to run the same code on many different types of machines), at the same time, they wanted the
speed provided by compiled languages.

- They came up with a hybrid approach.

 They reasoned that one reason interpreters were slow is that the high-level languages that
are being interpreted are quite different from the actual machine language run by the
interpreter.

 If the language being interpreted was much closer to machine language, the interpreter
would run much faster.

 They designed a fake computer architecture called the Java Virtual Machine (JVM). The

language instructions for this fake architecture were essentially at the machine language
level.

 The Machine Language for this new Java Virtual Machine architecture is called Java Bytecode.
 They then built interpreters for Java Bytecode on any machine where they wanted Java to

run.

 The Java source code we write is compiled to Java Bytecode.
 That Java Bytecode can be distributed to any computer, which has the JVM interpreter code

installed on it.
 Those computers execute the Java Bytecode using the JVM interpreter.
 The JVM interpreter is faster than a traditional interpreter is because Java Bytecode is very

simple and low level.

- This all has had an interesting side effect. Java has been popular enough that most Desktop and

Laptop computers have the Java Virtual Machine installed on it.

 9

 New language developers don’t have the resources to write compilers or interpreters for all
the different types of computer they might want to support.

 Instead, they write a single compiler for their language, which converts their High-Level
Language code to Java Bytecode, and their language can now run on any computer, which
has the JVM on it.

 When talking about new and upcoming computer languages one natural question to ask is

what platforms (i.e., what computers) does the computer language run on? One common
response is it runs on JVM, which means it runs on any computer that can run Java.

A Hybrid Approach (JavaScript)

- Just as new language developers have taken advantage of the JVM, JavaScript has been used for

similar purposes. Any consumer computer runs JavaScript, because all web browsers run JavaScript.
- Some new language developers write compilers, which convert their High-Level Language code to

JavaScript. Once in JavaScript it will run on any computer with a web browser.

- The main downside of this approach is that in contrast to Java Bytecode, JavaScript is a high-level

language, and interpreting JavaScript code is much slower than interpreting Java Bytecode.

Cross Compilers

- Note that a compiler does not have to run on the actual machine the code is intended to run on. For

example, when developing an application for iOS, I would write the code on my Apple Computer
which has x86 as its native language. On my Apple Computer, I might run a compiler which generates
ARM machine code, the machine code for the CPU of an iOS device. I would then take the machine
code output by the compiler running on my Apple Computer and place that code on the iOS device.

- I would not run a compiler directly on the iOS device itself.
- This approach is called cross-compiling.

Multicore Processors
- For many years, processors increased in speed every year. Unfortunately, Electrical Engineers are

having difficulty further increasing the speed of the CPU. So as an alternative, we have been getting
multiple Cores in each CPU.

- You can think of each Core as consisting of an entirely separate CPU with their own registers, their
own Arithmetic Logic Unit, and their own instruction register and instruction counter.

- Having multiple cores doesn’t necessarily lead to faster programs however. Let’s take a look at some
of the issues related to them:

 Multiple cores do allow for simultaneous execution of different programs. I can assign one
core to one program, and a different core to another program. (We’ll take a look at how
programs are scheduled in another lecture this week.)

 We can assign multiple cores to the same program, but that depends on the program being
written to take advantage of multiple cores.

 Some programs are very easy to divide up into parts that can be run on multiple cores. Some

programs that work well for multiple cores include:

 Web servers with multiple cores can assign different cores to different visitors. The
visitors don’t generally interact, so the cores can operate more or less
independently.

 Photo processing can assign different cores to different parts of the image. For
example, if I have four cores, I can assign one to the top-left, one to the top-right,
one to the bottom-left, and the last to the bottom-right.

 10

 Video processing can assign cores to different parts of a movie.

 Spreadsheets, such as Excel, can take advantage of multiple cores.

 Simulations can assign different processors to simulate different parts of the
simulation. For example, a weather simulation can assign a processor to simulate
one region, and a different processor for another region.

o In fact, supercomputers, which have many, many CPUs, are often used for
simulation work, and the Department of Energy is one of the biggest users
of supercomputers. Among other things they use them to simulate nuclear
weapons (which allows us to not actually have to run nuclear weapons
tests).

 Unfortunately, not all programs can be easily divided to take advantage of multiple cores.

While having a few cores is probably useful (because as we’ll see next lecture you always
have the Operating System running in addition to anything else executing on your computer),
the ability for someone to really take advantage of four, six, eight or more cores really
depends on the type of programs that you use.

Graphics Processing Units (GPUs)
- Modern desktop, laptop, and mobile devices all include a Graphics Processing Unit (GPU) in addition

to the CPU.
- While CPUs with 2, 4, 6, and 8 cores are common, GPUs have many more cores. For example,

NVidia’s GeForce GTX 960, a consumer-level GPU, has 1024 cores and their high end-consumer
models have as many as 3,584 cores as of this writing.

- What is the difference between the many, many cores in a GPU and the much smaller number of
cores in a CPU?

- GPU cores have much more limited utility. Typically, we will load data into a GPU and all the cores
will perform the same action simultaneously in all their cores.

 This allows GPUs to perform operations on vectors (1-dimensional arrays) and on matrices.
 These type of parallel operations are very useful for graphics, but can be used for many other

purposes including Neural Networks, Code Cracking, and Bitcoin Mining.
- For the right type of operation, a GPU gives is tremendous power, but it doesn’t replace the more

general-purpose functionality of the CPU.

RISC and CISC

John Hennessy, current Stanford Computer Science Professor and Stanford’s President from 2000-
2016, earned the Turing Award (Computer Science’s equivalent of a Nobel Prize) in 2018. Let’s take a
look at the work he earned it for.

As computers became more advanced, they gained increasingly complex instructions. So one might
have an instruction that retrieved the contents of a memory address specified in one register, added
it to the contents of another register and stored it back in the memory location specified by a third
register. This trend toward more complex instructions is called Complex Instruction Set Computing
(CISC).

President Hennessy, along with his co-Turing Award winner Professor Dave Patterson (at Berkeley),
concluded that this was the wrong approach. They advocated that instructions should become
simpler, not more complex. This approach is called Reduced Instruction Set Computing (RISC).
According to the Association for Computing Machinery (ACM), the primary Computer Science
professional organization, 99% of modern CPUs are based on RISC architectures.

 11

A small instruction set allows us to easily optimize and overlap instructions in ways that CISC cannot
do without difficulty. Two important innovations that followed were Pipelined and Superscalar CPUs.

Pipelined CPUs are based on the insight that during the execution of a CPU instruction, different

parts of the CPU are used at different times. We’ve previously seen a CPU cycle includes
fetching an instruction, decoding an instruction, and executing an instruction. In a traditional
approach, while we are fetching an instruction, the decoding circuits and the ALU (Arithmetic
Logic Unit) sit fallow; and while the ALU runs, the fetching and decoding circuits are wasted.

Pipelining will overlap these parts to look like something like this:

Instruction
Number

Pulse One Pulse Two Pulse Three Pulse Four Pulse Five

1 Fetch Decode Execute

2 Fetch Decode Execute

3 Fetch Decode Execute

Here while we are decoding an instruction, we are simultaneously fetching the next instruction.
When we execute an instruction in the ALU, we are decoding the next instruction and fetching
the third instruction.

We can continue to overlap all instructions until we hit a condition branch (e.g., an if-
statement), which does cause issues with pipelining, since we’ve already started fetching and
decoding an instruction which might not actually be executed depending on what happens
with our condition. There are a variety of ways of handling this, which we will not go into in
CS106E.

Superscalar CPUs include multiple CPU components, such as two or more ALUs, so that we can

simultaneously execute some instructions. For example if I have the code:

a = b + c;

x = y + z;

A Superscalar CPU would run these both simultaneously as there is no interaction between the
two lines of code. We can look at execution of a Superscalar CPU like this:

Pulse One Pulse Two Pulse Three Pulse Four Pulse Five

Fetch (Unit One) Decode (Unit One) Execute (Unit One)

Fetch (Unit Two) Decode (Unit Two) Execute (Unit Two)

 Fetch (Unit One) Decode (Unit One) Execute (Unit One)

 Fetch (Unit Two) Decode (Unit Two) Execute (Unit Two)

 Fetch (Unit One) Decode (Unit One) Execute (Unit One)

 Fetch (Unit Two) Decode (Unit Two) Execute (Unit Two)

 12

Additional CPU-Related Terms

Here are some more CPU-Related Terms you may run into:

 Microprocessor – Back in the old days, a CPU consisted of many different separate electronic chips
connected together. So for example, the CPU registers might be on one (or more) chips, the
Arithmetic Logic Unit might be another chip. A Microprocessor was a CPU that was fit entirely on
a single chip, really an astonishing achievement at the time. Nowadays all CPUs are
Microprocessors.

System-on-a-Chip (SoC) – Just as a Microprocessor took the disparate components of a CPU and put
them all on the same chip, an SoC takes different components that are typically found on different
chips and places them all on a single chip. For example, the Apple processors powering iPhones
such as the A9, A9X, and A10 Fusion are System-on-a-Chips. They all contain both a multi-core
CPU and a GPU both on the same physical computer chip.

32-bit Computing vs. 64-bit Computing – As we’ll discover next lecture all bytes in the computer are
given a numerical number, which is their address. If I set aside 32 bits for each address, I can access
232 different bytes (roughly 4.29 billion or 4.29x109). If I set aside 64-bits for each address, I can
access 264 different bytes (1.84x1019 – if you’re not up on scientific notation, 1019 is a 1 followed by
19 zeroes – which is to say it’s an extremely large number).

Going from CPUs, which handled data and addresses in 32-bit chunks to ones that could handle
64-bit chunks potentially, allows us to write programs which can process much more data.
However, we need to distinguish between three separate items:

 What size data does the CPU handle?

 What size data does the Operating System handle (essentially the system software,
we’ll take a close look at this later this wee).

 What size data does a particular program handle?

We need a 64-bit processor to run a 64-bit Operating System. However, it is still possible to run a
32-bit Operating System on a 64-bit processor.

We need a 64-bit Operating System to run a 64-bit program, however it is still possible to run a 32-
bit program using a 64-bit Operating System.

However, if possible, it’s best to run a 64-bit program, since that will be able to take advantage of
the amount of memory in a modern computer. As we just saw, this does require using a 64-bit
operating system, which in turn requires a 64-bit CPU.

